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A b s t r a c t. Currently, remote sensing sensors are very 
popular for crop monitoring and yield prediction. This paper 
describes how satellite images with moderate (Landsat satel-
lite data) and very high (QuickBird and WorldView-2 satellite 
data) spatial resolution, together with GreenSeeker hand held 
crop sensor, can be used to estimate yield and crop growth varia- 
bility. Winter barley (2007 and 2015) and winter wheat (2009 
and 2011) were chosen because of cloud-free data availabi- 
lity in the same time period for experimental field from Landsat 
satellite images and QuickBird or WorldView-2 images. Very 
high spatial resolution images were resampled to worse spatial 
resolution. Normalised difference vegetation index was derived 
from each satellite image data sets and it was also measured with 
GreenSeeker handheld crop sensor for the year 2015 only. Results 
showed that each satellite image data set can be used for yield 
and plant variability estimation. Nevertheless, better results, in 
comparison with crop yield, were obtained for images acquired 
in later phenological phases, e.g. in 2007 – BBCH 59 – average 
correlation coefficient 0.856, and in 2011 – BBCH 59-0.784. 
GreenSeeker handheld crop sensor was not suitable for yield esti-
mation due to different measuring method.

K e y w o r d s: satellite images, GreenSeeker handheld crop 
sensor, plant growth modelling, phenological phases, spectral 
index

INTRODUCTION

It is commonly known that crop yield depends on crop 
growth variability, which is related to multiple factors that 
can be time-independent (e.g. substrate, topography, soil 
type and depth) or time-dependent. Annually linked factors 
may include anomalies in planting, emergence, or weath-

er conditions. Seasonally linked factors can include plant 
diseases, weed development, severe climatic events or irri-
gation system malfunctions (Bégué et al., 2008).

Topography is one of the main factors affecting crop 
variability and crop yield. Godwin and Miller (2003) said 
that topography was one of the most obvious causes of va- 
riation in field crops. Crop variability and crop yield can be 
affected by the distribution of water on the field. Crops pro-
duce more stable yields with a stable water inputs (Schmidt 
and Persson, 2003), and water redistribution on a field can 
be modelled by several methods (Marques da Silva and 
Silva, 2006, Kumhálová and Moudrý, 2014). Topographic 
wetness index (TWI) is a commonly used algorithm for 
detecting the water distribution within the field (Kumhálová 
et al., 2014; Sørensen et al., 2006).

Crop growth and yield can be efficiently monitored 
using canopy reflectance (Scudiero et al., 2016). Canopy 
reflectance models have been used widely for investigat-
ing the response of vegetation indices to the variation of 
a number of factors and for understanding the mechanisms 
of interaction among these factors (Daughtry et al., 2000; 
Vincini et al., 2014; 2015). Different types of sensors mea-
suring the amount of reflected solar radiation, from low-cost 
multispectral to high-cost imaging spectrometers, from low 
spatial to high spatial resolution, and from ground-based to 
satellite are available (Hunt et al., 2013). Traditional satel- 
lite systems such as Landsat have been widely used for 
agricultural purposes over large areas. The benefit of this 
system is spectral resolution (over 7 spectral bands) and 
possibility of freely available remote sensing data (www.
usgs.com). Nevertheless one of the disadvantages of these 
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satellite images is their coarse spatial resolution (Zhang 
and Pierce, 2013), i.e. for Landsat images 30 m, and 16 
days the temporal resolution. The new generation of satel-
lites, such as QuickBird (QB) and WorldView-2 (WV-2) 
(DigitalGlobe, Logmont, Colorado, USA), provide multi-
spectral data in the visible to infrared spectra that can be 
extremely useful in precision agriculture because of their 
high spatial resolution, 0.6 m for QB and 2 m for WV-2 
satellite images (Mulla, 2013). The temporal resolution of 
these systems is 1 to 3 days for WV-2 and 3-7 days for QB.

Galambošová (2016) stated that another possibility for 
canopy reflectance measurement is, for example, the use 
of devices such as N sensor, Crop Spec, Crop Circle ACS, 
OptRX, ISARIA or Greenseeker. The Greenseeker (GS) 
as a crop sensor can be in handheld form as well. The GS 
optical sensor employs a patented technology to measure 
crop reflectance and to calculate the Normalised Difference 
Vegetation Index (NDVI). It also predicts yield potential. 
Nevertheless, the GS sensor is marketed primarily as a bio-
mass sensor, not as N-sensor (Sharma et al., 2015). NDVI 
spectral index (Rouse et al., 1974) is based on the absorp-
tion difference of photosynthetically active tissues in the 
red and near-infrared wavelengths of the electromagnetic 
spectrum (Julien et al., 2011). NDVI derived from meas-
urements of canopy reflectance have been widely used for 
in-season estimation of yield. NDVI is used for the evalu-
ation of different crops for different purposes at different 
scales (Domínguez et al., 2015; Tornos et al., 2014).

According to the literature, remote sensing sensors are 
very popular for monitor crop growth and for yield predic-
tion (Scudiero, 2016). Therefore, the main aim of this study 
was to assess the suitability of selected sensors and their 
spatial resolution for monitoring crop variability and yield.

MATERIALS AND METHODS

The experimental data for this study were obtained 
from an experimental field of 11.5 ha in Prague-Ruzyne 
(50°05’N; 14°17’30”E), Czech Republic, with a Haplic 
Luvisol soil. Conventional arable soil tillage technology 
and fixed crop rotation were used on this field. Yield was 
measured by a combine harvester equipped with the yield 
monitor LH 500 (LH Agro, Denmark). Detailed description 
of the yield measuring device can be found in Kumhálová 
et al. (2011). Experimental variograms of yield were com-
puted by common procedures using an exponential model. 
The 2009 yield data were not measured because of a sudden 
failure of the yield monitor.

Total monthly precipitation and temperature data were 
provided by the Agro meteorology station at the Crop 
Research Institute in Prague-Ruzyne. Precipitation and 
temperature for observed years are provided in Table 1.

The topographic data was derived from LiDAR data 
kindly provided by the Czech office for surveying, map-
ping and cadastre. Elevation data were interpolated by 
inverse distance weighting (IDW) in ArcGIS 10.1 to create 
the DEM. The slope model (SM) and flow accumulation 
model (FAM) were then derived from the DEM – D8 
algorithm. TWI uses SM and FAM raster data as inputs, 
based on the idea that low-gradient areas will gather water 
(high TWI values), whereas steep convex areas will shed 
water (low TWI values). TWI values are non-dimension-
al relative indices and vary by landscape type and DEM. 
Detailed description of the TWI can be found in Kumhálová 
et al. (2014).

Winter barley (2007 and 2015) and winter wheat (2009 
and 2011) were chosen because of cloud-free data availa- 
bility in the same period for the experimental field from 
Landsat satellite images and QuickBird or WorldView-2 
images. Landsat satellite images were downloaded from 
the USGS Global Visualisation Viewer (http://earthex-
plorer.usgs.gov/). WV-2 and QB satellite images were 
purchased from the ArcDATA Company (Table 2). For 
atmospheric correction, the Fast Line-of-sight Atmospheric 
Analysis of Hypercubes was used (Dominguez et al., 2015; 
Li et al., 2014). All image pre-processing was implemented 
with ENVI SW (ENVI; version 5.3, Excelis, Inc., McLean, 
VA, USA).

NDVI values, as the ratio of reflectance in near infrared 
(NIR) and RED visible region (Rouse et al., 1974), were 
computed for every image with ENVI SW. The informa-
tion about the range of wavelengths, satellite images, 
sensors and crops used in this study is provided in Table 2. 

T a b l e  1.  Precipitations and temperatures in different growth 
stages by BBCH scale recorded on the experimental field in 
selected years

Growth stage
Winter barley Winter wheat

2007 2015 2009 2011

Precipitation (mm)

BBCH 20-29 122.4 81.2 184.2 104.4

BBCH 30-59 2.4 43.7 109.2 39.5

After BBCH 60 146.6 64.6 154.6 257.4

Sum 271.4 189.5 448.0 401.3

Mean 90.5 63.2 149.3 133.8

Temperature (°C)

BBCH 20-29 6.9 3.3 4.4 3.4

BBCH 30-59 12.8 12.3 14.3 14.8

After BBCH 60 18.1 17.1 17.7 17.9

Sum – – – –

Mean 12.6 10.9 12.1 12.0
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All images were then exported into ArcGIS SW (ArcGIS; 
version 10.3.1, Esri, Inc., Redlands, CA, USA) for fur-
ther processing. Selected images (WV-2 and QB), yield 
and TWI raster were resampled by changing the cell size 
according to satellite image outputs to 30, 0.6, and 2 m, 
and then to 4 m according to average measured yield point 
(ca. 16 m2) and 15 m as a control of spatial resolution. The 
number of pixels used for evaluation was different for each 
of the evaluated years. It was caused by the fact that experi-
mental plot boundary changed slightly between the years 
because of management practices. Only the pixels com-
pletely inside the boundaries were used for the evaluation.

GreenSeeker (version 1.00, Rev B, 2012, Trimble 
Navigation Limited, USA) uses the red (660 nm, ~25 nm 
FWHM) and infrared (780 nm, ~25 nm FWHM) bands and 
converts reflected data into NDVI directly (Trimble, 2017). 
NDVI values from Greenseeker handheld crop sensor were 
collected during the winter barley growth on April 23rd, 
and May 19th 2015. Experimental variograms of NDVI 
values were computed by common procedures using an 
exponential and spherical model.

Pearson correlations between the yield maps, TWI and 
NDVI derived from satellite images and GreenSeeker sen-
sor were calculated using Statistica 13 (StatSoft Inc., Tulsa, 
USA) procedure.

RESULTS AND DISCUSSION

Correlation coefficients (R) between NDVI (from 
original and resampled data sets of Landsat, QB and WV-2 
satellite images with different spatial resolution), TWI 
and yield were calculated for individual image data and 
plant species (Table 3). Summary statistics of crop yield 
and GS for selected dates and years are given in Table 4. 
Summary statistics for NDVI calculated from original and 
resampled satellite images for selected crops are in Table 5. 

Correlation matrices between NDVI from GS crop sensor, 
Landsat satellite images, yield and TWI were then calcu-
lated for individual data sets of winter barley (Table 6).

Winter barley was grown in 2007 and 2015. In 2007, 
yield and TWI had higher R (0.433 for SR of Landsat and 
0.530 for QB) (Table 3). That year was drier in comparison 
with other years (Table 1). Low precipitation (2.4 mm) in 
the growth stage BBCH 30-59 can cause a significant dis-
placement of relatively higher yield to water-accumulating 
depressions. This fact is confirmed also by correlations pre-
sented in Table 3, where R between NDVI and yield had 
average value of 0.856 and R between TWI and NDVI had 
average value of 0.419 for all spatial resolutions (Fig. 1). 
The movement of higher yield to concave areas in 2007 was 
also validated by summary statistics presented in Table 4, 
whereby both standard deviation and min-max range were 
higher than in 2015. In our previous articles (Kumhálová 
et al., 2011; 2014), the influence of topography on yield in 
drier years was also found. Table 5 and Fig. 2 show that the 
NDVI values depended on the sensor used.

In 2015, winter barley yield and TWI had lower R va- 
lues (0.242 for Landsat and 0.148 for WV-2) (Table 3). The 
year 2015 was the driest among the years analysed in our 
study. The precipitation distribution was uneven during 
the winter barley growth (in BBCH 20-29, 81.2 mm only). 
On the contrary, the precipitation distribution in BBCH 
30-59 (43.7 mm) could probably cause the later crop to be 
beaten. In that year, harvesting losses caused by crop beat-
ing decreased the yield. This fact was confirmed by low 
R values between yield and NDVI (Table 3), although the 
NDVI values were relatively high during BBCH 21-22 and 
crops were in a good condition (Table 5). Winter wheat 
was grown in 2009 and 2011. Unfortunately, in the year 
2009 the yield was not measured. Table 3 shows that the R 
between TWI and NDVI from QB was very weak. It corre-
sponds with more precipitation distribution (Table 1) on the 
date of satellite data acquisition. The differences between 

T a b l e  2.  Available satellite images for the selected years

Satellite Sensor
RED range NIR range

Date Crop Growth stage
nm

Landsat 5 TM 630-690 760-900 24 May 2007 winter barley BBCH 59

Landsat 7 ETM+ 630-690 750-900 19 April 2009 winter wheat BBCH 20-29

26 May 2011 winter wheat BBCH 59

Landsat 8 OLI 640-670 850-880 18 March 2015 winter barley BBCH 21-22

QuickBird

590-710 715-918 22 May 2007 winter barley BBCH 59

13 April 2009 winter wheat BBCH 20-29

31 May 2011 winter wheat BBCH 59

WorldView-2 630-690 705-895 23 March 2015 winter barley BBCH 21-22
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sensors response can be seen between NDVI from Landsat 
and QB in Tables 3 and 5 as well. Landsat images showed 
noticeably higher values in all cases than the QB images in 
each spatial resolution.

In the year 2011, Table 3 shows higher R between win-
ter wheat yield and TWI (0.498 for Landsat and 0.630 for 
QB). The precipitation distribution was uneven during the 
winter wheat growth (after BBCH 60 - 257.4 mm) (Table 1). 
Correlation coefficients between yield and TWI reached 
high values (Table 3). This crop response was probably 
caused by low precipitation during the growth stages BBCH 
30-59. Again, low precipitation can cause a significant dis-
placement of relatively higher yield to water-accumulating 
depressions (Kumhálová et al., 2011; 2014). The sum-
mary statistics presented in Table 4 confirmed again the 

yield inequality. On the contrary, the summary statistics of 
NDVI presented in Table 5 showed similar values obtained 
by sensors used in this study.

GS measurements on April 23rd (BBCH 31) and May 
19th (BBCH 55), 2015, and comparisons between NDVI 
from GS and Landsat images, yield and TWI in Table 6 
are in good accordance with previous statements about 
crop development during the year 2015. Nevertheless, R 
between NDVI from GS and Landsat images were weak. It 
could be caused by the different method of data collection.

NDVI derived from Landsat and QB data showed 
similar results for later sensing (BBCH 59). For early sens-
ing stage (BBCH 20-29), significant differences between 
the results from Landsat and QB were found (Table 3). It 
could be influenced by the soil sensing between the crops. 

T a b l e  3.  Correlation coefficients between normalised difference vegetation index (NDVI) (from original and resampled Landsat 
(L), QuickBird (QB) and WorldView-2 (WV-2) satellite images with different spatial resolution (SR)), topographic wetness index 
(TWI) and resampled yield (to different SR) of selected crops and years 

Parameter Yield NDVI

Winter barley 

2007

Satellite L 5 TM QB L-5 QB QB QB QB

SR (m) 30 0.6 30 0.6 4 15 30

Yield 1 1 0.861*** 0.861*** 0.859*** 0.865*** 0.835***

TWI 0.433*** 0.530*** 0.485*** 0.427*** 0.428*** 0.444*** 0.313***

2015

Satellite L 8 OLI WV-2 L-8 WV-2 WV-2 WV-2 WV-2

SR (m) 30 2 30 2 4 15 30

Yield 1 1 0.264** 0.133*** 0.134*** 0.119** -0.018

TWI 0.242* 0.148*** 0.360*** -0.030*** -0.045*** 0.158*** -0.055

Winter wheat

2009

Satellite L 7 ETM+ QB L-7 QB QB QB QB

SR (m) 30 0.6 30 0.6 4 15 30

TWI – – 0.495*** -0.033*** -0.026* -0.041 0.109

2011

Satellite L 7 ETM+ QB L-7 QB QB QB QB

Yield 1 1 0.821*** 0.785*** 0.781*** 0.792*** 0.739***

TWI 0.498*** 0.630*** 0.515*** 0.397*** 0.393*** 0.409*** 0.250*

Levels of statistical significance: *p<0.05, **p<0.01, ***p<0.001.
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Domínguez et al. (2015) discussed in their study how the 
phenological phase of the crop could influence the NDVI 
values during the crop growth. They developed NDVI mo- 
dels for winter wheat and winter rape crops from seeding to 
later phenological phases of selected crops. The results of 
our study are in accordance with the study of Domínguez 
et al. (2015). Scudiero (2016) noted that more research is 
needed to define, by geographical region, which sensor 
measurements are most useful for improving soil and crop 
management. Images resampled to different spatial resolu-
tions showed similar mean but decreasing min-max range 
with decreasing spatial resolution. This fact was confirmed 
for each year studied. The spatial resolution of images used 
in this study did not play any crucial role for yield variabi- 
lity prediction. It could be an important property for crop 
evaluation in a small scale, for example for weed detection 
(Wu et al., 2011). Based on our results, the GS device is not 
suitable for yield estimation. This is in contrary with Walsh 
et al. (2013). They noted that GS NDVI was a better pre-
dictor of final winter wheat yield in a dry site-year. On the 
other hand, Updike and Comp (2010) stated that many of 
the differences in analysis of results can be explained by the 
differences in the sensors themselves. Vincini et al. (2015) 
discussed that experimental datasets can be affected by 
experimental error, due for example to imperfect sampling. 
It corresponds with the study of Ciganda et al. (2012). 
Those authors determined the number of leaf layers sensed 
by red-edge chlorophyll index. They found that vertical 
distribution of chlorophyll contents in leaves significantly 
influenced remote sensing techniques. Those techniques 
need to meet very stringent requirements for this reason. 

Zhang (2016) also highlighted that some differences exist 
between sensor systems. These differences can be caused by 
the variations in bandwidth of the particular spectral chan-
nels of the measuring systems. Mather and Koch (2011) 
described that one of the problems met in remote sensing is 
that the spectral reflectance of a given Earth-surface cover 
type is influenced by a variety of confusing factors. Casa 
et al. (2015) stated that small geometric registration errors 
typically do occur between the sensors used, even when an 
accurate calibration is performed.

CONCLUSIONS

1. On the basis of presented results it may be concluded 
that each satellite image data source used in this study can 
sufficiently explain yield variability regardless to spatial 
resolution of the images. Better results, in comparison with 
crop yield, were obtained for images acquired in later phe-
nological phases. Images acquired in early phenological 
phases showed differences according to sensor used. The 
sensors usually differ in bandwidth. Other reason of varia-
tions can be early scanning of the crop (when soil is visible 
between the plants).

2. GreenSeeker handheld crop sensor is not suitable for 
yield estimation of the whole agriculture plot due to high 
workload of this procedure based on long time required for 
data collection and the necessity of using the interpolation 
method to obtain the map. In contrast, satellite image is 
acquired in a relatively very short time.

3. Results obtained in this study can be helpful for the 
selection of suitable sensor with adequate spatial resolution 
for yield estimation.

T a b l e  4.  Summary statistics and method of interpolation used for plant yield (t ha-1) in selected years and for NDVI from 
GreenSeeker (GS) sensor

Parameter
Winter barley Winter wheat GS

2007 2015 2011 23 April 2015 19 May 2015

Count 8808.0 10974.0 7548.0 103.0 103.0

Mean 5.618 5.322 7.053 0.779 0.802

Median 5.481 5.385 7.218 0.790 0.810

Standard deviation 1.373 0.836 1.953 0.062 0.030

Minimum 1.109 1.391 0.589 0.390 0.670

Maximum 10.149 9.254 13.458 0.890 0.850

Skewness 0.015 -0.666 -0.141 -2.946 -2.206

Method of interpolation Kriging

Method of estimation Method of moments (MoM)

Variogram model Exponential Spherical

Distance parameter (r) 22.9 11.0 45.3 205.7 610.9

Approximate range = 3 x r 68.7 33.0 135.9 617.1 -

Nugget variance 0.3170 0.4200 1.3800 0.0025 0.0005

Sill variance 1.0100 0.5900 3.2600 0.0051 0.0012
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T a b l e  6.  Correlation coefficients between normalised difference vegetation index (NDVI) from GreenSeeker (GS) sensor, Landsat 
images, crop yield and TWI of winter barley

2015 Date/SR (m) GS NDVI GS NDVI L-8 NDVI L-8 NDVI

Date April 23 May 19 April 19 May 14

Yield 30 0.011 0.022 0.260** 0.145

TWI 30 0.075 0.041 0.411*** 0.165

L8 NDVI April 19 0.310* – – –

L8 NDVI May 14 – 0.359*** – –

Levels of statistical significance: *p<0.05, **p<0.01, ***p<0.001.

T a b l e  5.  Summary statistics for NDVI calculated from original and resampled satellite images for selected years and crops

Satellite L-5 QB L-8 WV-2

Parameter
Winter barley

2007 2015

SR (m) 30 0.6 4 15 30 30 2 4 15 30

Count 115 306704 6880 485 115 102 26684 6627 469 102

Mean 0.756 0.635 0.636 0.635 0.635 0.528 0.414 0.414 0.414 0.418

Median 0.759 0.638 0.638 0.637 0.635 0.532 0.416 0.415 0.413 0.418

Standard 
deviation 0.077 0.041 0.041 0.041 0.039 0.046 0.057 0.058 0.058 0.056

Minimum 0.556 0.477 0.490 0.495 0.544 0.315 0.185 0.191 0.219 0.269

Maximum 0.876 0.799 0.750 0.728 0.721 0.626 0.619 0.597 0.559 0.559

Skewness -0.664 -0.401 -0.408 -0.420 -0.138 -1.047 -0.153 -0.160 -0.242 -0.353

Satellite L-7 QB L-7 QB

Winter wheat

2009 2011

SR (m) 30 0.6 4 15 30 30 0.6 4 15 30

Count 107 300157 6722 482 107 101 293279 6562 464 101

Mean 0.774 0.591 0.591 0.591 0.583 0.800 0.773 0.774 0.773 0.775

Median 0.782 0.591 0.592 0.592 0.585 0.808 0.780 0.781 0.779 0.782

Standard 
deviation 0.044 0.043 0.042 0.043 0.041 0.055 0.044 0.044 0.044 0.044

Minimum 0.492 0.301 0.305 0.333 0.325 0.616 0.550 0.580 0.607 0.616

Maximum 0.833 1.050 0.761 0.726 0.651 0.876 1.076 1.018 0.932 0.887

Skewness -2.920 -1.029 -1.077 -1.093 -2.509 -1.189 -0.957 -0.935 -0.872 -0.932

Explanations as in Table 3.
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Fig. 1. Maps of kriged yield predictions in the experimental field during the observed years: a – 2007 – winter barley, b – 2011 – winter 
wheat, and c – topographic wetness index model map.

Fig. 2. Normalised difference vegetation index (NDVI) values according to sensor used (Landsat and QuickBird (QB)), together with 
QB images resampled to different spatial resolution, and winter barley yield (t ha-1) for the year 2007.
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